Pozitronová emisní tomografie

Pozitronová emisní tomografie v NNHPozitronová emisní tomografie (PET) je moderní lékařská zobrazovací metoda, která patří do oboru nukleární medicíny.

Historické poznámky

Zobrazovací zařízení využívající anihilační záření pozitronových radiofarmak jsou vyvíjena od poloviny minulého století. Tomografické vlastnosti byly dány těmto přístrojům až počátkem 70. let, kdy se začíná psát historie PET. Následující dvě desetiletí zůstala metoda vyhrazena jen pro výzkumná pracoviště. Teprve pokrok výpočetní techniky a zdokonalení neobyčejně složitých kamer umožnil v 90. letech průnik PET do klinické praxe.

 Od roku 1995 se Ústav jaderného výzkumu Řež, a.s. (ÚJV) zabýval myšlenkou výroby pozitronových radiofarmak. Připravil návrh projektu, který v roce 1996 podpořil jak Státní úřad pro jadernou bezpečnost , tak Mezinárodní agentura pro atomovou energii (dceřinná organizace OSN ), která navíc na projekt přispěla značnou částí finančně. PET centrum mělo být původně umístěno ve FN Bulovka, koncem roku 1997 byl projekt přesměrován do Nemocnice Na Homolce (NNH). V průběhu roku 1998 probíhaly projekční práce a již v červnu roku 1999 byly dokončeny stavební úpravy. V srpnu pak nabylo platnosti kolaudační rozhodnutí, byla instalována PET kamera a historického 25.8.1999 bylo provedeno první PET vyšetření v ČR.

 Jaký je princip PET?

Podobně jako při scintigrafii je intravenózně podáno radiofarmakon, tj. radionuklidem označená molekula, jejíž biodistribuce je následně zobrazována prostřednictvím snímací kamery na obrazovku počítače. Tolik podobnost. U scintigrafie je k detekci používán pouze jeden foton záření gama vznikající při rozpadu nestabilního jádra. Naopak u PET jsou používána radiofarmaka značená radionuklidy rozpadajícími se za vzniku pozitronu b+. Pozitron je částice podobná elektronu, má však opačný – kladný náboj. Zajímavá je interakce pozitronu s okolní hmotou. Když totiž přijde do styku s běžným elektronem, společně anihilují, tedy zmizí z povrchu zemského. Pozůstatkem je tzv. anihilační záření, čili 2 fotony o shodné energii 511 keV pohybující se po přímce opačným směrem od místa anihilace. Nachází-li se radionuklid uvnitř prstence vhodných detektorů, lze při současném zaznamenání dvou dopadů fotonu na povrch prstence určit koincidenční přímku (viz obrázek). Takových přímek jsou při PET stanovovány statisíce za sekundu. Výkonný počítač z nich poté zrekonstruuje transaxiální řezy.

 PET kamera umožňuje snímat anihilační záření z různých radionuklidů. Nejčastěji se používá 18F a biogenních prvků (11C, 13N, 15O). Tyto radionuklidy jsou po výrobě v cyklotronu zabudovávány do rozličných molekul radiofarmak. V klinické praxi je na celém světě zdaleka nejvíce rozšířena 2-[18F]fluoro-2-deoxy-D-glukóza (18FDG). Není bez zajímavosti, že tuto molekulu v neaktivní formě poprvé syntetizovali v roce 1968 pracovníci Univerzity Karlovy v Praze (Pacák J., Točík Z., Černý M.: Synthesis of 2-Deoxy-2-fluoro-D-glucose, Chem. Commun. 1969, 77). V omezené míře se klinicky také využívají v ČR zatím nedostupná radiofarmaka: 18F-fluoro-ethyl-tyrosin (FET), 18F-fluoridový iont, 18F-DOPA, 11C-methionin (MET), výzkumně pak např. 15O-voda, 13N-amoniak a stovky dalších druhů biologicky aktivních molekul.

 Klinické využití PET

Kromě toho, že se PET v průběhu desetiletí osvědčila jako vynikající výzkumný nástroj a napomohla pochopení řady patofyziologických procesů, je čím dále, tím více používána v rutinní klinické praxi. Její využití je mnohostranné s ohledem na množství použitelných radiofarmak. V ČR je zatím dostupné jediné radiofarmakon pro PET: 18FDG. Proto dále bude zmíněno jen využití PET s 18FDG.

 18FDG je z krve transportována do tkání shodnými mechanizmy jako glukóza a je analogicky fosforylována na 18FDG-6-fosfát. Nepodléhá však následné defosforylaci, a je proto v tkáních progresivně vychytávána. Lze tedy indukovat, že obraz představuje konzumpci glukózy ve tkáních. 18FDG je fyziologicky akumulována mozkem, částečně je vylučována do moči, takže se obvykle zobrazuje dutý systém ledvin a močový měchýř, občas lze 18FDG nalézt ve střevech. Akumulace 18FDG v myokardu je nepravidelná a závisí na momentálních metabolických poměrech. V neurologii lze 18FDG-PET využít pro lokalizaci epileptického ložiska u pacientů před neurochirurgickým zákrokem. Epileptické ložisko má mezi záchvaty snížený metabolizmus, při záchvatu naopak zvýšený.

 V kardiologii je 18FDG-PET považována za zlatý standard pro posouzení viability infarzovaného myokardu před revaskularizačním výkonem. Vzhledem k tomu, že maligní tumory mají obvykle výrazně zvýšenou konzumpci glukózy, našla 18FDG-PET největší uplatnění v řadě onkologických aplikací: při posouzení malignity tumoru neznámé povahy, při určení rozsahu onemocnění (staging uzlin a vzdálených metastáz), při monitorování efektu terapie (viz obrázek pacientky s lymfomem před a po terapii) a při včasném odhalení recidivy nádorového onemocnění. 

Comments